Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nutr ; 151(10): 2932-2941, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34255069

RESUMO

BACKGROUND: l-Tryptophan reduces energy intake in healthy men. The underlying mechanisms, including appetite, plasma cholecystokinin (CCK), tryptophan (Trp), and the ratio of Trp to large neutral amino acids (Trp:LNAAs ratio), and whether responses differ in lean and obese individuals, are uncertain. OBJECTIVES: We evaluated the effects of intragastric Trp on energy intake (primary outcome) and their potential mechanisms, pre- and postmeal, in lean men and those with obesity. METHODS: Twelve lean men [mean ± SD age: 30 ± 3 y; BMI (in kg/m2): 23 ± 1] and 13 men with obesity (mean ± SD age: 31 ± 3 y; BMI: 33 ± 1) received, on 3 separate occasions, in double-blind, randomized order, 3 g ("Trp-3") or 1.5 g ("Trp-1.5") Trp, or control ("C"), intragastrically, 30 min before a buffet-meal. Energy intake from the buffet-meal, hunger, fullness, and plasma CCK and amino acid concentrations were measured in response to Trp alone and for 2 h postmeal. Data were analyzed using maximum likelihood mixed-effects models, with treatment, group, and treatment-by-group interaction as fixed effects. RESULTS: Trp alone increased plasma CCK, Trp, and the Trp:LNAAs ratio (all P < 0.001), with no difference between groups. Trp suppressed energy intake (P < 0.001), with no difference between groups (lean, C: 1085 ± 102 kcal, Trp-1.5: 1009 ± 92 kcal, Trp-3: 868 ± 104 kcal; obese, C: 1249 ± 98 kcal, Trp-1.5: 1217 ± 90 kcal, Trp-3: 1012 ± 100 kcal). Postmeal, fullness was greater after Trp-3 than after C and Trp-1.5 (all P < 0.05), and in men with obesity than in lean men (P < 0.05). Plasma Trp and the Trp:LNAAs ratio were greater after Trp-3 and Trp-1.5 than after C (all P < 0.001), and tended to be less in men with obesity than in the lean (P = 0.07) (Trp:LNAAs ratio: lean, C: 1.5 ± 0.2, Trp-1.5: 6.9 ± 0.7, Trp-3: 10.7 ± 1.4; obese, C: 1.4 ± 0.1, Trp-1.5: 4.6 ± 0.7, Trp-3: 7.8 ± 1.3). There were inverse correlations of energy intake with plasma Trp and the Trp:LNAAs ratio in both groups (lean, both r = -0.50, P < 0.01; obese, both r = -0.40, P < 0.05). CONCLUSIONS: Intragastric Trp has potent energy intake-suppressant effects, in both lean men and those with obesity, apparently related to the Trp:LNAAs ratio.


Assuntos
Apetite , Triptofano , Adulto , Colecistocinina , Método Duplo-Cego , Ingestão de Energia , Humanos , Masculino , Obesidade
2.
J Nutr ; 147(7): 1275-1281, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28592515

RESUMO

Background: Lysine is reported to lower the glycemic response to oral glucose in humans and, albeit at high loads, to slow gastric emptying of glucose and decrease food intake in rats.Objective: We investigated the effects of intragastrically administered lysine on early (15 min) and later (60 min) blood glucose and insulin responses to and gastric emptying of a mixed-nutrient drink, and effects on subsequent energy intake.Methods: Twelve healthy volunteers (7 men and 5 women; mean ± SEM age: 24 ± 2 y) received intragastric infusions (200 mL) containing 5 or 10 g l-lysine or a control solution within 2 min on 3 different occasions in randomized order. Fifteen minutes later, participants consumed a mixed-nutrient drink (300 mL, 400 kcal, and 56 g carbohydrates) within 1 min. For the next hour (t = 0-60 min), we collected blood samples every 15 min (to measure blood glucose, plasma insulin, and plasma glucagon) and breath samples every 5 min (to measure gastric emptying via a 13C-acetate breath test). We then quantified subjects' energy intake from a buffet-style meal (t = 60-90 min).Results: There were no differences between the 2 lysine treatments; hence, data were pooled for further analysis. Lysine did not affect blood glucose at 15 min or the blood glucose area under the curve from 0 to 60 min (AUC0-60min) but it decreased blood glucose at 60 min compared with the control solution (-9.1% ± 3.1%, P < 0.01). Similarly, the early insulin response and insulin AUC0-60min were not affected by lysine, but plasma insulin at 60 min was 20.9% ± 5.6% lower than after the control (P < 0.05). Plasma glucagon at both 15 min (20.7% ± 4.7%, P < 0.001) and 60 min (14.1% ± 5.4%, P < 0.05) and the glucagon AUC0-60min (P < 0.01) were greater after lysine than after the control. Lysine did not slow gastric emptying, and there was no effect on energy intake.Conclusion: In healthy adults, lysine slightly reduced the glycemic response to an oral mixed-macronutrient drink, an effect that was apparently independent of insulin or slowing of gastric emptying. This trial was registered at www.anzctr.orgau as 12614000837628.


Assuntos
Bebidas/análise , Glicemia/metabolismo , Carboidratos da Dieta/farmacologia , Esvaziamento Gástrico/efeitos dos fármacos , Insulina/sangue , Lisina/farmacologia , Adulto , Testes Respiratórios , Dióxido de Carbono , Carboidratos da Dieta/análise , Relação Dose-Resposta a Droga , Método Duplo-Cego , Ingestão de Alimentos , Feminino , Humanos , Lisina/administração & dosagem , Masculino , Adulto Jovem
3.
Am J Clin Nutr ; 104(5): 1274-1284, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27655440

RESUMO

BACKGROUND: The branched-chain amino acids leucine and isoleucine lower blood glucose after oral glucose ingestion, and the intraduodenal infusion of leucine decreases energy intake in healthy, lean men. OBJECTIVE: We investigated the effects of the intragastric administration of leucine and isoleucine on the gastric emptying of, and blood glucose responses to, a physiologic mixed-macronutrient drink and subsequent energy intake. DESIGN: In 2 separate studies, 12 healthy, lean subjects received on 3 separate occasions an intragastric infusion of 5 g leucine (leucine-5g) or an intragastric infusion of 10 g leucine (leucine-10g), an intragastric infusion of 5 g isoleucine (isoleucine-5g) or an intragastric infusion of 10 g isoleucine (isoleucine-10g), or a control. Fifteen minutes later, subjects consumed a mixed-nutrient drink (400 kcal, 56 g carbohydrates, 15 g protein, and 12 g fat), and gastric emptying (13C-acetate breath test) and blood glucose, plasma insulin, C-peptide, glucagon, glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), and cholecystokinin (leucine study only) were measured for 60 min. Immediately afterward, energy intake from a cold, buffet-style meal was assessed. RESULTS: Compared with the control, leucine-10g decreased the blood glucose area under the curve (AUC) (P < 0.05) and tended to reduce peak blood glucose (P = 0.07), whereas effects of leucine-5g were NS. Leucine-10g, but not leucine-5g, increased plasma insulin and C-peptide AUCs (P < 0.01 for both), but neither dose affected glucagon, GLP-1, GIP, cholecystokinin, gastric emptying, or energy intake. Compared with the control, isoleucine-10g reduced the blood glucose AUC and peak blood glucose (P < 0.01), whereas effects of isoleucine-5g were NS. Neither load affected insulin, C-peptide, glucagon, GLP-1, or GIP. Isoleucine-10g, but not isoleucine-5g, slowed gastric emptying (P < 0.05), but gastric emptying was not correlated with the blood glucose AUC. Isoleucine did not affect energy intake. CONCLUSIONS: In healthy subjects, both leucine and isoleucine reduced blood glucose in response to a mixed-nutrient drink but did not affect subsequent energy intake. The mechanisms underlying glucose lowering appear to differ; leucine stimulated insulin, whereas isoleucine acted insulin independently. These trials were registered at www.anzctr.org.au as 12613000899741 and 12614000837628.


Assuntos
Bebidas , Glicemia/metabolismo , Isoleucina/administração & dosagem , Leucina/administração & dosagem , Adulto , Índice de Massa Corporal , Peptídeo C/sangue , Colecistocinina/sangue , Estudos Cross-Over , Carboidratos da Dieta/administração & dosagem , Gorduras na Dieta/administração & dosagem , Proteínas Alimentares/administração & dosagem , Ingestão de Energia , Feminino , Esvaziamento Gástrico , Polipeptídeo Inibidor Gástrico/sangue , Glucagon/sangue , Peptídeo 1 Semelhante ao Glucagon/sangue , Voluntários Saudáveis , Humanos , Insulina/sangue , Isoleucina/sangue , Leucina/sangue , Masculino , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...